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ABSTRACT

DETERMINING THE OPTIMUM NUMBER OF INCREMENTS IN COMPOSITE

SAMPLING

John E Hathaway II

Department of Statistics

Master of Science

Composite sampling can be more cost effective than simple random sampling. This

paper considers how to determine the optimum number of increments to use in composite

sampling. Composite sampling terminology and theory are outlined and a model is devel-

oped which accounts for different sources of variation in compositing and data analysis. This

model is used to define and understand the process of determining the optimum number of

increments that should be used in forming a composite. The blending variance is shown

to have a smaller range of possible values than previously reported when estimating the

number of increments in a composite sample. Accounting for differing levels of the blending

variance significantly affects the estimated number of increments.
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Chapter 1

Introduction

An important issue that arises with data collection is the cost. Environmental and

medical data can be very costly and difficult to gather, which motivates the investigation

of more cost-effective ways to gather such data. One of these methods is called composite

sampling (Johnson and Patil 2001).

The composite sampling process begins by developing the sampling design that will

be used to select the increments, the individual samples that will be mixed, to form the

composite sample. Next, the increments are gathered and blended into a composite sample

that is often treated as a perfect mixture of the increments. Then one or more sub-samples

are removed from the composite and sent to the laboratory for analysis. These sub-samples

can be further divided and each resulting laboratory sample analyzed (Figure 1.1).

A variety of costs must be accounted for in composite sampling. The researcher

must account for the cost to gather each increment, to mix the specified increments into

the composites, to analyze the contents of each sample, etc. Often, soil samples are cheap

to gather but very expensive to analyze. This fact suggests that some type of compositing

technique could reduce costs (Rohlf et al. 1996).

1
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Incrment 1

Composite Sample

Sub-sample 1	 	 	    	 Sub-sample 2

Analysis 1 Analysis 2

Increment 2 Increment 3 Increment 4

Figure 1.1: Basic Compositing Process

Composite sampling has been used in various fields of application (Boswell et al.

1996). These different applications lead to different purposes for and methods of compositing

increments. The general motivation for composite sampling is to reduce the number of

measurements that need to be made to estimate some specified parameters. Under this

motivation, a plethora of parameters, processes, variations, and objectives reside. This

project involves general theory that can be applied to most areas of composite sampling

with only slight variations of the underlying model.

This project was funded by Battelle Memorial Institute, which is under contract to

the U.S. Department of Energy (Contract DEAC06-76RL01830), to add features to Visual

Sample Plan (VSP). VSP is a software program designed to help government agencies, pri-

vate industry, and individuals develop a sampling procedure that is efficient and statistically

sound. One of the options being developed in VSP is a composite sampling plan to assist

in prevalence estimates.

2
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Mixing variability must be accounted for in composite sampling. The primary goal

of this project is to mathematically define an adequate method for calculating the number

of increments to use in a composite sample when there is mixing variation. In the process of

developing this methodology, I will propose more stringent bounds on the mixing variation

than previously used. Also, I will show that mixing variation highly influences the calculated

number of increments to be used in composite sampling.

Chapter 2 is a literature review of the development of the theory of composite sam-

pling. The general field of composite sampling is well represented in statistical, environ-

mental, and other journals (Boswell et al. 1996). With a few exceptions, only the articles

that assist in the development of the project required for the VSP program are reviewed.

Chapter 3 describes in more detail the features Battelle desired to include in VSP and some

proposed ways to account for mixing variation. Finally, chapter 4 is a paper that will be

submitted to the Journal of Environmental & Ecological Statistics.

3
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Chapter 2

Literature Review

2.1 Introduction

This chapter reviews some of the terminology and concepts that are used in composite

sampling. Explanations of some of the methods used to apply composite sampling to various

fields are given.

2.2 Terminology

Composite sampling suffers from a lack of common terminology. A researcher who is

reading articles on composite sampling will encounter new terminology for similar or even

identical aspects of composite sampling in each paper. For example, what Duncan (1962)

calls increments have been called samples (Rohde 1976), core samples (Izenman 2001),

primary units (Rohlf et al. 1996), and aliquots (Johnson and Patil 2001). The symbols and

subscripts that are used to represent the different elements of the calculations appear in an

even larger variety. At times, each author’s equation can be fundamentally the same, but

the definitions of the terms and variables are so different that the equations from each seem

starkly different.

4
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For this project, Duncan’s (1962) “standardized” terminology will be used.

Lot: The population that is under investigation. A lot could be a truckload of coal,

a section of land, or a quantity of blood.

Segment: A portion of the lot to which inference will be made.

Increment: Randomly selected samples that represent the segment and are used

to form the composite.

Blending: The mixing or agglomerating of increments to form the composite sam-

ple.

Composite sample: A sample formed by blending a certain number of increments

from specified segments of the lot.

Sub-sample: A portion of the composite sample that is sent to the laboratory.

Laboratory Sample: A portion of the sub-sample that is measured.

2.3 Fields of Use

Composite sampling can be used in many fields; however, it is often used in areas

where the cost of analyzing data is high and gathering increments is low. Composite sam-

pling has one feature that adds complexity in creating a general sampling strategy, namely

the mixing process. The physical mixing procedure is different for each area of research.

This project uses environmental sampling as an example; however, composite sampling is

used in many other fields. For example, the forensic study of illicit drugs has increased the

use of composite sampling techniques. Composite sampling is used to test large quantities

of illicit drugs at once to estimate the amount of a substance that is possessed by accused

5



www.manaraa.com

criminals (Izenman 2001). In medical fields there is a great deal of research on compos-

ite sampling methods to estimate the prevalence of diseases like HIV (Tu et al. 1994) and

Hepatitis (Davis et al. 1973).

Often the goal of these studies is to estimate the overall proportion of infected subjects

for a certain disease. This type of estimation requires a detailed sampling plan that takes into

account the costs of different steps and the different sizes of composites that will be formed

if tests are positive. For example, researchers will form a composite of many individuals’

blood samples to check for overall prevalence of HIV. If the test returns positive, a second

test is done on a smaller composite sample of the samples used in the previous composite.

This procedure is repeated by looking at successively smaller composites of the positive

results. A well-defined sampling plan is required to know how much blood is needed from

each subject in order to complete the expected divisions (Lancaster and Keller-McNulty

1998).

Medical fields do not have as much difficulty compositing as the environmental fields

because they are often analyzing blood. There is a limited number of ways to combine the

blood samples into a composite sample. There are some difficulties in how the samples react

to dilution; however, compositing samples has been shown to be very effective (Tebbs and

Swallow 2003). Composite sampling is effective in medical fields because it is cost-effective

when the prevalence rates are low (Stephens et al. 2000).

Environmental researchers also use composite sampling as an efficient cost savings

tool. With environmental data a variety of different parameters are of interest. These

include the overall mean level of the entire site as well as locations of ‘hot spots’ (Boswell

6
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and Patil 1987). Much of the composite sampling research for environmental data involves

the estimation of contamination levels of soils, air or water (Boswell et al. 1995, 1996). The

identification of ‘hot spots’ from a large sampling area requires complex sampling patterns

that mix different combinations of the increments into composite samples (Exner et al. 1985;

Gore et al. 2001).

The greatest problems associated with composite sampling in environmental projects

arise because of the variety of elements to be mixed. Researchers are faced with the task of

mixing many different types of soils in each site. In a quarter acre area, the land could have

five or six distinct soil types that require different mixing methods. Research on composite

sampling in environmental fields must detail how the samples are prepared and composited

because the process of mixing can be controversial (Gilbert and Doctor 1985; Pitard 1993).

2.4 Estimating Variance

The goal of this project is to calculate the appropriate number of increments to

include in each composite for a predetermined level of variance. Some researchers have

mentioned this issue in their papers, but left the subject with little development (Elder et al.

1980). In Chapter 3, technical articles which define how the different variance components

contribute to the overall variance of the composites will be reviewed in more detail. Brown

and Fisher (1972) wrote an early paper on the overall variance. This paper was followed by

a more complete mathematical evaluation of composite sampling (Rohde 1976).

Elder et al. (1980) outlined in more detail how to estimate the overall variance when

accounting for mixing variability; however, they stated that the issue of estimating sample

7
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size while accounting for mixing variability is not very feasible. This lack of feasibility was

based on mathematical results of the variance equation they derived and the bounds of

the mixing variation. If the 1/σb, where σb is the deviation of the blending procedure as

described in Figure 3.2, is less than the number of increments included then the estimate of

the variance will actually increase when more increments are included (Figure 2.1). Chapter

3 discusses in detail how to account for the mixing variation when estimating the overall

variation and why it is important.
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Figure 2.1: Plot of Variance Estimate based on n

Two other papers that have been published in the past ten years attempt to estimate

the overall variability, but they do not specifically apply to the scenario of interest in this

project. Rohlf, Akcakaya, and Ferraro (1996) derived a basic variance equation that they

used along with cost calculations to define the cheapest strategy for a composite sampling

project, but they did not include blending variation. Izenman (2001) detailed a specific

mathematical strategy for estimating proportions of illicit drug substances for legal issues.

8
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Their paper accounts for mixing variation, but does not deal with a continuous segment to

sample from.

9
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Chapter 3

Methods

3.1 Introduction

This project was initiated by Brent Pulsipher of the Pacific Northwest National

Laboratory (PNNL). A client contracted to have PNNL design an adequate sampling plan

to establish a contamination boundary of a defined site. This project was designed as

an enhancement to Visual Sample Plan (VSP) — a software program that facilitates the

sampling process based on the Data Quality Objectives (DQO) process developed by the

United States Environmental Protection Agency (EPA).

3.2 Visual Sample Plan

The purpose of VSP is to provide simple, defensible tools for defining an optimal

sampling scheme for characterizing environmental contamination. VSP is applicable to any

two-dimensional sampling plan, including surface soil, building surfaces, water bodies, or

other similar applications. VSP is tailored to the environmental professional who values cost

effectiveness, simplicity, accuracy, and defensible methods. This professional wants to solve

real-world environmental contamination problems using state-of-the-art statistical methods,

10
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but does not have time to master new complex software tools. It is no simple matter to

collect and analyze environmental data to reach conclusions that are statistically defensible

while minimizing costs. VSP can help scientists and engineers solve these problems (Hassig

et al. 2004).

Figure 3.1 shows a screen shot from VSP with a generic map and some of the com-

mand options that are available. This specific view has the box on the bottom right that

deals with the objective of this project. In that box it details that twenty five increments

should be used for the ‘multiple-increment sample’ or composite sample.

3.3 Proposed Project

This project was designed to fit under the goals of VSP. Specifically, the Navy con-

tracted PNNL to develop the process of using composite samples and sampling segments on

the perimeter (boundary) of an enclosed area. The Navy wants to determine the boundary

of a specified contaminants spread. If the upper confidence limit (UCL) on the mean of a

segment is above the concentration threshold, the boundary is extended outward and new

increments are taken on the extended perimeter. This process is repeated until the UCL for

all segments is below the defined threshold level. Figure 3.2 shows an image of the sampling

process with the components necessary in the estimation process.

When PNNL designed this part of VSP, they did not adequately define how many

increments should be included in each of the composites. This was due to the combination

of lack of research in this area and the Navy’s desire to have an option hurriedly developed in

VSP so they could use it in their sampling projects. The research in this project is the first

11
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step to a more defensible calculation of the number of increments in a composite sample.

3.4 Variance Estimation Equations

Researchers have accounted for different variabilities in estimates of the overall vari-

ability of the mean with composite sampling. Some of the early research accounted for

between-increment variability and composite-to-composite variability (Elder et al. 1980;

Izenman 2001; Rohde 1976; Duncan 1962; Brown and Fisher 1972). Three of the key papers

are presented below (Elder et al. 1980; Izenman 2001; Rohde 1976). An in-depth discussion

of the variance equation’s characteristics as a whole will be further developed in Chapter 4.

3.4.1 Properties of Composite Sampling Procedures

Elder et al. (1980) considered a situation in which each of r composite samples

is formed by taking n increments from a segment. Each composite sample consists of S

subsamples, but only s of the subsamples are selected. Each of the selected subsamples is

measured t times.

They denote the amount of material in subsample j, j = 1, . . . , s from composite i,

i = 1, . . . , r that was derived from increment l, l = 1, . . . , n as gijl. Then the total amount

of material in subsample j from composite i is Gijl =
∑n

l=1 gijl. The proportion of material

in subsample j from composite i that was derived from increment l is

bijl =
gijl

Gij

. (3.1)

Note that
n∑
i=1 bijl = 1. They assume that the aijl, l = 1, . . . , n are random variables

with mean 1/n and common variance σ2
b . Because of the constraint, however, they are

13
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not independent. Also, the b’s in different composites are uncorrelated and the covariance

structure for the b’s in different subsamples from the same composite is assumed to be the

same.

They denote the value of the material in subsample j from composite i that was

derived from increment l as zijl. They assume that the zijl, l = 1, . . . , n are random variables

and that the Cov(bijl, zijl) is zero. When using composite sampling we don’t observe each zijl.

We attempt to observe the value associated with the jth subsample from the ith composite

which is represented as a linear combination of the bijl and zijl as a weighted average

yij =
n∑

l=1

bijlzijl. (3.2)

The problem is that yij is not observed; instead we observe xijk where

xijk = yij + tijk (3.3)

where tijk is the error of measurement for the kth test on the jth subsample from the ith

composite. The expected value of tijk is zero and the variance is σ2
t .

To estimate the overall mean of the composite samples from a segment the average

is taken.

x =
1

rst

∑
ijk

[∑
l

(bijlzijl) + tijk

]
(3.4)

Elder et al. (1980) show that E(x) = µx where µx is the true average level of prevalence.

They derive the variance of x.

Var(x) =
σ2

I

rn
+

1

rs

(
S − s

S − 1

)[
σ2

w

n
+ nσ2

b (σ
2
I + σ2

w)

]
+

σ2
t

rst
(3.5)

where σ2
I is the between-increment variation and σ2

w is the within-increment variation.

14
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Often σ2
w and σ2

b are assumed to be zero. This is most often done because of the

difficulty and expense of actually estimating these variation effects. For this project the

within-increment variation is assumed to be zero to simplify the development of sample size

estimates. When σ2
b is assumed to be zero, the calculations reduce to the basic equation for

the variance of the sampling distribution of the mean in multi-stage sampling.

If it is assumed that σ2
w = 0 then the Equation (3.5) reduces to

Var(x) =
σ2

I

rn
+

1

rs

(
S − s

S − 1

)
nσ2

bσ
2
I +

σ2
t

rst
. (3.6)

If it is further assumed that σ2
b = 0 then Equation (3.6) reduces to

V ar(x) =
σ2

I

rn
+

σ2
t

rst
. (3.7)

An important implication of the presence of σ2
b in the formula for V ar(x) is that there

is a relative upper bound on V ar(x) (Elder et al. 1980, lemma 2). This upper bound arises

when the composite sample is not mixed and the variation of the “blending” is essentially

the between-increment variation. Thus,

σ2
I

rn
+

σ2
t

rst
≤ V ar(x) ≤ σ2

I

rn
+

1

rs

(
S − s

S − 1

)[
σ2

w +

(
n− 1

n

)
σ2

I

]
+

σ2
t

rst
(3.8)

3.4.2 Composite Sampling

Rohde (1976) described the variance of the composites in Equation (3.9). Rohde

(1976) assumed that σ2
t and σ2

w as defined above were zero. He also assumed that the

number of analytical tests and composites were both 1.

V ar(x) =
σ2

I

n
+

nσ2
bσ

2
I

s
(3.9)
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3.4.3 Statistical and Legal Aspects of the Forensic Study of Illicit Drugs

Izenman (2001) developed a similar equation for estimating the variance based on his

scenario for estimating purity of segmented containers. He developed his method to identify

the purity of the drugs captured for criminal cases. He actually derived his formula from the

two previous articles mentioned above. His equation is almost identical to those in the other

two articles; however, he added elements unique to his problem. For example, he accounted

for the number of segmented containers sampled.

3.5 Summary and Proposal

As stated in Chapter 2, based on the current research there are some theoretical

problems in determining the optimal number of increments to use in each composite to

obtain a desired level of composite to composite variation (Elder et al. 1980). The original

goal was to do a literature review and find journal articles that developed the methods

appropriate for use with VSP. The literature reviewed did not contain adequate theory for

implementation with VSP. Developers of The VSP software wanted to account for multiple

variances in the sampling design. The main source of variability that we wanted to add into

the model was mixing variability. While some authors had discussed this mixing variation,

there was no development of how to calculate the number of increments to use in each

composite sample.

The main goal of this research is the development of a procedure for calculating

the optimal number of increments to include in each composite when there is variation in

the mixing procedure for use in the VSP software program. Although Elder et al. (1980)
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showed how to estimate the overall variance when accounting for mixing variation, they

did not propose a solution. They explained how increasing the number of increments can

actually increase the composite sample variance instead of decreasing the variation. This is

due to the wide bounds that they used for the mixing variation.

Other goals of this project include:

• Use the increment quantity estimation equation to investigate bounds on the range

of values for σ2
b . It turns out that these bounds are more stringent than previously

defined by Elder et al. (1980).

• Show how even “small” amounts of mixing variation affect the estimate of the num-

ber of increments to use in a composite.

• Show how to estimate the different variance components with actual data from a

previous study (Jenkins et al. 1996) of composite sampling, and use these estimates

in an example to estimate the number of increments to use in a composite sample.
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Figure 3.2: The Compositing Process for Perimeter Sampling
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Chapter 4

Article

4.1 Introduction

Analyzing for contaminants in soil, sediments, animals, air or water often involve

expensive measurement procedures. This expense motivates the use of composite sampling,

which is a physical averaging of the samples. If the expense of gathering samples is com-

paratively low, then the researcher can gather all the needed samples, blend them together,

and measure one subsample to get a physical average of all the samples which could be the

same as measuring each sample and taking their mathematical average.

Unfortunately, compositing does not always result in a perfectly blended physical

sample. Variation in the blending of the composite sample affects the overall variation

in unique ways. This uniqueness results from the relationship between sample size and

the blending variation; therefore, to estimate the number of samples to use in a composite

sampling procedure for a desired level of overall variation requires a different procedure than

standard sample size estimation problems.
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4.1.1 Definition of Terms

One of the challenges of understanding composite sampling is the terminology that

varies across fields of application and even within a specific field. For this article, Duncan’s

(1962) “standardized” terminology will be used.

Lot: The population that is under investigation. A lot could be a truckload of coal,

a section of land, or a quantity of blood.

Segment: A portion of the lot to which inference will be made.

Increment: Randomly selected samples that represent the segment and are used

to form the composite.

Blending: The mixing or agglomerating of increments from a segment.

Composite sample: A sample formed by blending a certain number of increments

from specified segments of the lot.

Sub-sample: A randomly selected portion of the composite sample that is sent to

the laboratory.

Laboratory Sample: A randomly selected portion of the sub-sample that is mea-

sured.

4.1.2 Description of Composite Sampling Process

Another difficulty of understanding composite sampling is that compositing is used

in a variety of fields of application and materials. This variety leads to different goals and

implementations of composite sampling. The general description of composite sampling is

the process of combining increments in order to reduce the number of measurements needed
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for estimating specified parameters (Behets et al. 1990; Izenman 2001; Gilbert and Doctor

1985). Under this overarching concept, a plethora of differing parameters, processes, and

objectives reside. The scope of this paper is limited to theory that can be applied to most

types of composite sampling with some slight variations of the underlying model.

In general, the compositing process begins by developing the sampling design for

selecting the increments to form the composite sample. Next, the increments are gathered

and blended into a composite sample. Note that the goal is a perfect blending of the

increments, but in practice the mixing may not be perfect. Then one or more sub-samples

are removed from the composite and sent to the laboratory for analysis. This sub-sample

can be further sampled and each resulting laboratory sample used for chemical analysis or

other measurement.

Figure 1 shows the process of forming composite samples and measuring the variables

of interest when the lot is the perimeter (boundary) of an enclosed area. This process is

of interest when a researcher wants to determine the boundary of a specified contaminant.

If the upper confidence limit (UCL) on the mean of a segment is above the concentration

threshold, then the boundary is extended outward and new increments are taken on the

extended perimeter. This process is repeated until the UCL for all segments is below the

defined threshold levels.

4.2 Compositing Theory

Boswell, et al. (1996) compiled an annotated bibliography of the theory and ap-

plication of composite sampling. Brown and Fisher (1972) developed models and derived
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Figure 4.1: Compositing Process
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variance formulas for composite sampling of bales of wool. Rohde (1976) extended Brown

and Fisher’s (1972) work. Finally, Elder, et al. (1980) further extended the work of Rohde

(1976) and Brown and Fisher (1972). The Elder et al. (1980) result is used here to develop

a method for computing the number of increment samples per composite. They define x as

the average of the observations from a segment. They then derived the following variance

for x.

σ2
x =

σ2
I

rn
+

nσ2
bσ

2
I

rs
+

σ2
t

rst
(4.1)

where σ2
x is the variance of the composite mean that will be used to compute the

confidence interval for the mean,

σ2
I is the between-increment variance, which will be greater than or equal to the

between composite variance,

σ2
b is the variance that results from blending the increments, to be defined in more

detail in Section 4.3.1.

σ2
t is the between-measurement variance .

n is the number of increments that are taken from a given segment to be blended

into a composite sample.

r is the number of replicate composite samples that are obtained in the same

segment.

s is the number of sub-samples that are removed from the composite to be analyzed

by the laboratory.

Equation (4.1) assumes that the increments, sub-samples, laboratory samples, and
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Figure 4.2: Relationship between n, σ2
b , and σ2

x when σ2
I , σ2

t , r, s, and t are known or fixed.
Each line represents a different value of σ2

b .

composite samples are of equal volumes in their respective stages.

Equation (4.1) reduces to the following expression if σ2
b = 0:

σ2
x =

σ2
I

rn
+

σ2
t

rst
(4.2)

where rn equals the total number of increments per segment. This “ideal model” is of-

ten used to compute σ2
x when it is assumed that the blending process is nearly perfect

(σ2
b=0). This assumption is the cause of debate on the appropriateness of composite sam-

pling techniques (Patil 1995). Johnson et al. (2001) and Rohlf et al. (1996) used costs when

determining the optimal numbers of composites, increments, and measurements under the

assumption that σ2
b = 0.

4.2.1 Facts about n, σ2
b , and σ2

x

Elder et al. (1980) mention an interesting relationship between n, σ2
b , and σ2

x. With

their proof they reason that σ2
b can be constant over a finite interval of values of n. Over this
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finite n interval σ2
b is a variation that is controlled by the actual blending process. Section

4.3.1 details σ2
b , its bounds, and how those bounds can affect σ2

b when n gets very large.

When looking at σ2
b as a variation that can be controlled by the blending process alone,

Equation (4.1) can be used to show that as n becomes larger than
√

s/σb then the estimate

for σ2
x will actually increase with n instead of decreasing.

Figure 4.2 shows the estimates for σ2
x as a function of differing n and σ2

b with σ2
I = 4,

σ2
t = 0.002, r = 2, s = 1, and t = 2. The values of σ2

I , σ2
t , r, s, and t are arbitrarily

chosen for this example and would be known or decided upon in an actual study. The

solid line shows the estimates of σ2
x for differing values of n when σ2

b = 0, the dashed line

is for σ2
b = 0.006, the dotted line represents σ2

b = 0.0045, and the dotted-dashed line is

for σ2
b = 0.012. The horizontal line represents a desired σ2

x of 0.31035. The dashed lines

in Figure 4.2 are examples of the convex relationship between n and σ2
x that results from

Equation (4.1), when σ2
b is considered to be constant in relation to n.

Point ‘a’ shows the point where an n of 6.3 will result in the desired σ2
x for σ2

b = 0 and

point ‘b’ gives an n of 12.6 where the line that results from σ2
b = .006 crosses the desired

threshold. The dotted-dashed line that results from σ2
b = 0.012 shows that the mixing

variation is too large to attain the desired σ2
x, while the dotted line shows that a reduced σ2

b

will give the desired σ2
x with a smaller n.
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4.3 Expressions for the Number of Increments Per Composite Sample for

a Desired σ2
x

Few papers discuss estimating the number of increments to attain a certain level

of variation when making inference on a segment. Elder et al. (1980) briefly discuss the

problem without a final recommendation of how to estimate n.

If values for σ2
I and σ2

t are known and values for r, s, t, and σ2
x can be specified, the

reduced model given by Equation (4.2) gives the minimum number of increments (no), that

would be required if σ2
b = 0. Solving Equation (4.2) for n yields

no =
σ2

I

rσ2
x −

σ2
t

st

(4.3)

When σ2
b is not zero,

n =

[
rσ2

x −
σ2

t

st

]
±
√[

σ2
t

st
− rσ2

x

]2
−4σ2

b (σ2
I )2

s

2σ2
bσ2

I

s

(4.4)

which is obtained by using the quadratic formula to solve Equation (4.1) for n.

Equation (4.4) gives two solutions since the minimum value is desired, use of the

minus sign in Equation (4.4) gives the minimum n value. Figure 4.2 shows examples of

having two solution for n of which the solution that results from the minus sign (Equation

4.4 would always be preferable.

n =

[
rσ2

x −
σ2

t

st

]
−
√[

σ2
t

st
− rσ2

x

]2
−4σ2

b (σ2
I )2

s

2σ2
bσ2

I

s

. (4.5)
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4.3.1 σ2
b -Definition and Bounds

An important part of using Equation (4.5) to estimate the number of increments in

a composite sample is to have an accurate understanding of σ2
b . Three issues are discussed.

First, what is σ2
b and what are some of its properties? Second, when using Equation (4.5) to

estimate n and values for σ2
I , σ2

t , r, s, and t are known or specified, what are the permissible

values of σ2
b in order to attain a desired σ2

x? Finally, how do changes in σ2
b within the

permissible levels explained in section 4.4 relate to no?

Elder et al. (1980) describe the blending variation by defining G as the total amount

of material in each subsample and gijl as the amount of material from the lth increment in

the ith composite that appears in the jth subsample from the composite, where i = 1, . . . , r,

j = 1, . . . , s, and l = 1, . . . , n. Then the fraction of material from the lth increment in the

jth subsample from the ith composite sample is

bijl =
gijl

G
(4.6)

and thus
n∑

l=1

bijl = 1 (4.7)

σ2
b is the variance of the bijl, l = 1, . . . , n and the mean of bijl is 1/n. If perfect blending

is achieved, there should be 1/n of each of the n increments in the subsample taken from

the composite. On the other hand, the worst blending would result in n/n of one increment

and 0/n of the remaining increments in the laboratory subsample. This reasoning leads to

the limits of σ2
b Elder et al. (1980).

0 ≤ σ2
b ≤

n− 1

n2
(4.8)
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These bounds show that as the number of increments used in the composite sample

are increased toward infinity, the maximum of σ2
b will approach zero. However, in actual

sampling procedures as n increases the compositing procedure will deteriorate (mix poorly)

which will tend to cause σ2
b to increase. This creates an interesting dynamic in how σ2

b

changes with increasing n. It would be beneficial for each composite sampling project to

carefully determine how this relationship applies in their procedure.

For small increases n, the mixing procedure should not decrease in efficiency, so that

an increase in n may result in some decrease in σ2
b ; however, the amount of decrease in

σ2
b would be unique to each application and difficult to determine. Rohde (1976) proposed

a Dirichlet model for σ2
b which results in a precise relationship between n and σ2

b . Under

a Dirichlet model, σ2
b when mixing two increments must be larger than when mixing six

increments. This forced relationship does not intuitively represent physical blending of soil

samples very well over a small interval of n.

In this paper we will assume that σ2
b is constant over a reasonable range of values of

n. Assuming σ2
b is constant with respect to n, as discussed in section 4.2.1, will result in a

conservative approach that allows σ2
b to be accounted for in the equation to estimate n.

4.4 How σ2
b is affected by the other factors.

When all the parts of Equation (4.3) are known or given, then using the discriminant

of Equation (4.5) will show the permissible range of σ2
b . The discriminant from Equation

(4.5) is [
σ2

t

st
− rσ2

x

]2

−4σ2
b (σ

2
I )

2

s
(4.9)
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which means that

(
σ2

t

st
− rσ2

x

)2

≥ 4σ2
b (σ

2
I )

2

s
(4.10)

in order that the square root of the discriminant is a real number. Solving for σ2
b ,

σ2
b ≤ s

(
σ2

t

st
− rσ2

x

2σ2
I

)2

. (4.11)

Next, taking the square root of both sides of Equation (4.11) yields the only positive

solution,

σb ≤
√

s
rσ2

x −
σ2

t

st

2σ2
I

(4.12)

which can be expressed as

σb ≤
√

s

2
× 1

σ2
I

rσ2
x−

σ2
t

st

. (4.13)

Expression (4.13) is a function of
√

s/2 and no in Equation (4.3) which is used to

estimate n when there is no blending variation. With this relationship, to estimate n for

known values of σ2
I , σ2

t , r, s, and t and a desired value for σ2
x, the range of σ2

b that will give

real solutions for n is

0 ≤ σ2
b ≤

s

2n2
o

. (4.14)
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4.4.1 Estimation of n Using σ2
b and Their Relationship Based on Equation

(4.9)

Another important fact that results from Equation (4.5) is that the maximum number

of increments (nm ) for a specified set of parameter values is 2no. This result can be seen

by using Equation (4.5) and replacing σ2
b with its maximum permissible value Expression

4.14). This results in

nm =

(
rσ2

x −
σ2

t

st

)
−

√(
σ2

t

st
− rσ2

x

)2

− 4
s

(
√

s
2

rσ2
x−

σ2
t

st

σ2
I

)2

(σ2
I )

2

2
s

(
√

s
2

rσ2
x−

σ2
t

st

σ2
I

)2

σ2
I

(4.15)

which reduces to

nm = 2
σ2

I

rσ2
x −

σ2
t

st

= 2no. (4.16)

Assuming that σ2
b is constant with respect to n in this interval will give conservative

estimates for the number of of increments (n) needed based on differing levels of σ2
b . This

conservative approach is a result of using the maximum σ2
b allowable based on the discrim-

inant of Equation (4.5). Now, σ2
b can be examined as a function of the physical mixing

process. If the σ2
b is to large to obtain an estimate for n, then improvements in σ2

b must be

attained by improving the physical mixing procedure.

4.5 Estimating the Number of Increments

If σ2
I , σ2

t are known, σ2
x, r, and t are predetermined and s=1, then σ2

b is bounded

by its restraint defined in Expression (4.13). So, σ2
b can take one values between 0 and the
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value given by Expression (4.13). Now we can look at the range of σb and see how changing

σb affects the estimate of the number of increments.

Figures (4.3) and (4.4) are graphs with specified values of the parameters used in

Equation (4.5). The values on the x and y axes will change for different parameter values;

however, the shape of the graph will remain the same.

The graph of the standardized values (Figure 4.5) is a unique way that the relation-

ship can be described. This relationship is defined by the discriminant (Equation 4.5). Each

axis is standardized using

1

2
σ2

I

rσ2
x−

σ2
t

st

. (4.17)

Specifically, the y-axis is multiplied by Expression (4.17) and the x-axis is a propor-

tion of the max of σb or in other words a proportion of Equation (4.17).

Figure 4.6 has the same curve and x-axis as Figure 4.5; however, the y-axis is now

standardized by

1
σ2

I

rσ2
x−

σ2
t

st

(4.18)

instead of Expression (4.17). Using this standardization the x-axis starts at no, the minimum

value of n with no mixing variation. This unique relationship provides a simple method to

calculate the number of increments when accounting for mixing variation. Calculate no

and specify σ2
b as a proportion of max(σ2

b ), then use Figure 4.6 to estimate the number of

increments to use.
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4.5.1 Example Data Set

Jenkins et al. (1997) describe a composite sampling process that was performed at

multiple sites. Two of the 10 data sets, Hawthorne and Volunteer, are used as an example

of how to obtain estimates for the desired variance components described previously. Ta-

ble (4.1) shows the data of the TNT measurements for the increments and for the seven

sub-samples taken from the composite. For their study, they took seven samples by ran-

domly selecting the location for sample one and then systematically taking the remaining

six samples as illustrated at the top of Figure 4.7. Each of these seven samples was divided

into two increments, labeled 1a and 1b through 7a and 7b. The remaining material was

placed into the composite sample. After compositing , seven sub-samples were taken from

the composite and measured (Each sub-sample measurement is labeled as S1,. . . ,S7).

4.5.2 Analysis

The two data sets in Table (4.1) were analyzed using PROC MIXED in SASR© 9.1.

Using the duplicate measurements on each increment, an estimate for the testing variation,

σ2
t , was obtained. The between increment variation, σ2

I , was also estimated for each dataset.

The between subsample variation,σ2
s , provided a way to find σ2

b . Elder et al. (1980) showed

that

σ2
x =

σ2
I

rn
+

σ2
s

rs
+

σ2
t

rst
(4.19)

where

σ2
s = nσ2

bσ
2
I (4.20)
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Increment 3                    C3 Increment 4                    C4

Bulk Composite
C1,C2,C3,C4,C5,C6,C7

7 Unique 
Subsamples
S1,. . .,S7

Sample 1 & 2 Sample 5,6 & 7

C1 & C2 C5,C6, & C7

Split
Measure

Sample 3  		 	 	 	 	 	   Sample 4

Split
Measure

Figure 4.7: Sampling and Measurement Procedure for the data of Jenkins et al. (1997)
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Hawthorne Volunteer
TNT on-site analysis (mg/g)
Increments Increments
1a 127 1a 4.3
1b 125 1b 4.1
2a 116 2a 6.1
2b 103 2b 5.9
3a 379 3a 17.6
3b 366 3b 19.9
4a 59.1 4a 10.5
4b 56 4b 10.7
5a 12.4 5a 33
5b 13.3 5b 35.8
6a 170 6a 13.9
6b 173 6b 14.4
7a 240 7a 7.8
7b 245 7b 7.3

Subsamples Subsamples

S1 129 S1 15.1
S2 137 S2 15.9
S3 116 S3 16.5
S4 138 S4 17.6
S5 139 S5 19.4
S6 147 S6 15.1
S7 170 S7 16.6

Table 4.1: Two data sets from Jenkins et al. (1996). Each sample was split into a part to
composite and an increment that was split and measured twice.

Volunteer (mg/g) Hawthorne (mg/g)
σ2

I 14626 108.04
σ2

t 27.6014 0.9821
σ2

s 248.68 1.324
σ2

b 0.00175 0.00243

Table 4.2: The estimates of the variance components from SASR©by their respective data
sets.
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The data set in Table (4.1) provided estimates for σ2
s , n, and σ2

I . With these values an

estimate of σ2
b can be obtained as

σ̂2
b =

σ̂2
s

nσ̂2
I

(4.21)

4.5.3 Example for estimating n based on the Hawthorne and Volunteer

Estimates

For each site, we have chosen values for r, s, and t. In our example, two composites

(r) are done and one sub-sample (s) is selected and measured (t) from each composite. The

values of r, s, and t can vary by situation. no from Equation (4.3) was calculated for the

Hawthorne site with desired σ2
x of 15 and for the Volunteer site with a desired σ2

x of 750.

If σ2
b = 0, the estimate of no for the Hawthorne site was 3.73, and the estimate of no for

the Volunteer site was 9.93. These two values were used in Equation (4.14) to find the

highest allowable σ2
b to obtain an estimate of n for each site. The maximum σ2

b for the

Hawthorne site was 0.01797 , and was 0.002534 for the Volunteer site. Table (4.2) shows

σ̂2
b for Hawthorne and Volunteer to be 0.00175 and 0.00243, respectively. At each site the

blending variation is low enough to attain the desired σ2
x. Figure 4.6 and the value of no

for each site gave the proposed number of increments to use based on each site’s blending

variation. These values match the calculations done for each site using Equation (4.5).

The calculations for the Hawthorne and Volunteer sites using Equation (4.5) are given in

Equations (4.22) and (4.23), respectively.

3.825 =
2× 15− 0.9821

1
−
√(

0.9821
1

− 2× 15
)2 − 4× 0.00175× 108.042

2× 0.00175× 108.04
(4.22)
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16.52 =
2× 750− 27.6014

1
−
√(

27.6014
1

− 2× 750
)2 − 4× 0.00243× 146262

2× 0.00243× 14626
(4.23)

Thus 4 increments should be composited for Hawthorne and 12 increments should be com-

posited for Volunteer.

4.6 Conclusion

The data of Table 4.1 allowed us to estimate σ2
b using Equation (4.21). Another

possible method to estimate σ2
b is to spike one increment per composite with a substance

that performs similarly to the substances of interest and then do the compositing. If the

blending process is good, the substance should be 1/n of the original spiked amount when

the subsample is measured. If a substance could be chosen that did not interact with the

elements of interest, this could be used as a possible quality control mechanism on blending.

Three important facts emerge from this study on estimating n when blending varia-

tion exists. First, a large blending variance will prevent a solvable solution for n based on

certain desired values for σ2
x. Second, when the blending variance is included in the model it

can have a large effect on the estimated value of n. Hence, the blending variance should be

used in determining the number of increments to use in a composite sample study. Third,

creating accurate methods for estimating the number of increments per composite sample

will benefit sampling software programs that assist in composite sampling problems.
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Chapter 5

Further Research and Contributions to Statistical Practice

There are are a few ideas that could be developed so the theory of estimating the

number of increments could be used more in actual research. For example, the data used in

this project (Jenkins et al. 1996, 1997) could be used to estimate the number of increments

to be used in a future study in the same or similar areas. This would provide an opportunity

to see if the estimation maintains the desired variance.

Another crucial step is developing a cost analysis program that uses the costs of

different sampling procedures while accounting for the mixing variation. As previously cited

some papers have developed a cost analysis program that looks at different combinations of

sampling procedures in composite sampling. For example, one could place five increments

in each composite sample and gather twenty five composite samples or one could place

twenty-five increments in each composite sample and gather five composites. A key element

that would affect how many composite samples are gathered is the relationship of mixing

variation to the number of increments per composite. Accounting for mixing variation while

estimating costs would be a useful extension of this project.

40



www.manaraa.com

Chapter 6

Appendix: Code

varequation1 <− function (iv , bv , tv , r , n , s , t ) {
mv <− iv/ (r∗n ) + (n∗bv∗iv )/ (r∗s ) + tv/ (r∗s∗t )
mv
}
xx <− 1 :60

pdf ( f i l e=vargraph . pdf” , width =6.25 , he ight =4, fami ly=”Times” , p o i n t s i z e = 12)
p l o t ( xx , varequat ion ( 4 , . 0 0 6 , . 0 0 2 , 2 , xx , 1 , 2 ) , type=”l” , xlab=
”Number of increments used” , ylab=quote ( ”Variance of” ∗bar (x )∗”” ) )
t i t l e (main=expr e s s i on ( ”Relationship of ” ∗sigma [ bar ( x ) ] ˆ2∗ ” to the number
of increments used” ) )

legend (5 , 2 , c (
exp r e s s i on ( t==1) ,
exp r e s s i on ( r==3) ,
exp r e s s i on ( sigma [ t ] ˆ2 == .002 ) ,
exp r e s s i on ( sigma [ b ]ˆ2 == .006 ) ,
exp r e s s i on ( sigma [ I ] ˆ2 == 4) ,
exp r e s s i on (1/sigma [ b ] == 13) ) ,
ho r i z=F, nco l=2)
ax i s (1 ,13 , f ont=2)

dev . o f f ( )

pdf ( ”\\figure2 . pdf” , width = 6 .25 , he ight =4, fami ly=”Times” , p o i n t s i z e =12)
p l o t ( stu [ , 2 ] , s tu [ , 1 ] , x lab=quote ( sigma [ b ] ˆ 2 ) , ylab=”Number of Increments

Estimated” )
dev . o f f ( )

pdf ( ”\\figure3 . pdf” , width = 6 .25 , he ight = 4 , fami ly = ”Times” , p o i n t s i z e =
12)

p l o t ( stu1 [ , 2 ] , s tu1 [ , 1 ] , x lab=quote ( sigma [ b ] ˆ 2 ) , ylab=”Number of Increments
Estimated” )

dev . o f f ( )

pdf ( ”\\figure4 . pdf” , width = 6 .25 , he ight =4, fami ly=”Times” , p o i n t s i z e =12)
p l o t ( stu [ , 2 ] , s tu [ , 4 ] , axes=F, xlab=quote ( ”Proportion of Max ( ”∗sigma [ b ]ˆ2∗” ) ” ) ,
y lab=”Standardized Scale of Increments” , type=”l” )

41



www.manaraa.com

ax i s (1 , at=c (0 . 0000029576 , . 0 001 , . 0002 , . 0 003 , . 0003697 ) , l a b e l s=F, d i s tn=NULL)
ax i s (2 , l a b e l s=F, d i s tn=NULL)
a <− exp r e s s i on ( ”max( ”∗sigma [ b ]ˆ2∗” ) ”/125)
b <− exp r e s s i on ( ”max( ”∗sigma [ b ]ˆ2∗” ) ”/4)
cc <− exp r e s s i on ( ”max( ”∗sigma [ b ]ˆ2∗” ) ”/2)
d <− exp r e s s i on ( ”4max( ”∗sigma [ b ]ˆ2∗” ) ”/5)
e <− exp r e s s i on ( ”max( ”∗sigma [ b ]ˆ2∗” ) ” )
mtext ( c ( a , b , cc , d , e ) , s i d e =1, l i n e =1, at=c

(0 . 0000029576 , . 0001 , . 0002 , . 0 003 , . 0003697 ) )
a <− exp r e s s i on ( 0 . 5∗n [m] )
b <− exp r e s s i on ( 0 . 6∗n [m] )
cc <− exp r e s s i on ( 0 . 7∗n [m] )
d <− exp r e s s i on ( 0 . 8∗n [m] )
e <− exp r e s s i on ( 0 . 9∗n [m] )
f <− exp r e s s i on ( 1 . 0∗n [m] )
mtext ( c ( a , b , cc , d , e , f ) , s i d e =2, l i n e =.5 , outer=F, at=c

( 0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 ) )
dev . o f f ( )

pdf ( ”\\figure5 . pdf” , width = 6 .25 , he ight = 4 , fami ly = ”Times” , p o i n t s i z e =
12)

p l o t ( stu [ , 2 ] , s tu [ , 3 ] , axes=F, xlab=quote ( ”Proportion of Max ( ”∗sigma [ b ]ˆ2∗” ) ” ) ,
y lab=”Standardized Scale of Increments” , type=”l” )
ax i s (1 , at=c (0 . 0000029576 , . 0 001 , . 0002 , . 0 003 , . 0003697 ) , l a b e l s=F, d i s tn=NULL)
ax i s (2 , at=c ( 1 , 1 . 2 , 1 . 4 , 1 . 6 , 1 . 8 , 2 . 0 ) , l a b e l s=F, d i s tn=NULL)
a <− exp r e s s i on ( ”max( ”∗sigma [ b ]ˆ2∗” ) ”/125)
b <− exp r e s s i on ( ”max( ”∗sigma [ b ]ˆ2∗” ) ”/4)
cc <− exp r e s s i on ( ”max( ”∗sigma [ b ]ˆ2∗” ) ”/2)
d <− exp r e s s i on ( ”4max( ”∗sigma [ b ]ˆ2∗” ) ”/5)
e <− exp r e s s i on ( ”max( ”∗sigma [ b ]ˆ2∗” ) ” )

mtext ( c ( a , b , cc , d , e ) , s i d e =1, l i n e =1, outer=F, at=c (0 . 0000029576 , . 0001 , . 0002 ,
. 0003 , . 0003697 ) )
a <− exp r e s s i on (1∗n [ 0 ] )
b <− exp r e s s i on ( 1 . 2∗n [ 0 ] )
cc <− exp r e s s i on ( 1 . 4∗n [ 0 ] )
d <− exp r e s s i on ( 1 . 6∗n [ 0 ] )
e <− exp r e s s i on ( 1 . 8∗n [ 0 ] )
f <− exp r e s s i on ( 2 . 0∗n [ 0 ] )

mtext ( c ( a , b , cc , d , e , f ) , s i d e =2, l i n e =.5 , outer=F, at=c ( 1 , 1 . 2 , 1 . 4 , 1 . 6 , 1 . 8 , 2 . 0 ) )
dev . o f f ( )

# Code to es t imate var iance components in SAS #

data increments ;
i n f i l e ”/increment . dat” f i r s t o b s =2;
input l o c a t i o n s i t e $ Sample measurement$ TNTOS TNB TNT 24DNT Total ;
run ;

data compos ites ;
i n f i l e ”/composite . dat” f i r s t o b s =2;
input l o c a t i o n s i t e $ compos i tes$ TNTOS TNB TNT 24DNT Total ;
run ;
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proc mixed data=increments ;
c l a s s Sample measurement ;
model TNTOS=;
random Sample ;
by l o c a t i o n ;
run ;

proc mixed data=compos i tes ;
c l a s s compos i tes ;
model TNTOS=;
by l o c a t i o n ;
run ;
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